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In this paper we consider Diophantine equations of the type a2/1 + (a+ 1)2/2 + (a+ 2)2/3 +
... + (a+ n− 1)2/n = b2. Examples of solutions are given. We give parametric solutions.

I. INTRODUCTION
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II. MAIN RESULTS

A. ”Trivial” solutions

If we set a = 1, then
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and our equation becomes
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or

(2n+ 1)2 − 8b2 = 1. (3)

This is a Pell equation with respect to 2n + 1 and b. The general solution is
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The first few solutions are n = 1, 8, 49, 288, 1681, 9800, ...
This already assures that there is an infinite number of solutions to the equation (1).
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B. Parametric solutions

For every n, the sum is a quadratic polynomial, so the equation may be reduced to a Pell-like equation. Some of them
have solutions.
The two term sum reduces to a Pell-like equation

(3a+ 1)2 − 6b2 = −2 (5)

The solutions are
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The first few solutions are (a = 7, b = 9), (a = 719, b = 881), (a = 70487, b = 86329).
The three term sum reduces to a Pell-like equation

(11a+ 7)2 − 66b2 = −72 (7)

The solutions are
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The first few solutions are (a = 571, b = 774), (a = 9659515, b = 13079046), (a = 163226494651, b = 221009718534).
Four term equation reduces to a Pell-like

u2
− 1200b2 = −4900, (9)

where u = 50a+ 46. No solutions.
Five term equation reduces to a Pell-like

u2
− 32880b2 = −133200, (10)

where u = 274a+ 326. No solutions.
Are there solutions with larger n? In fact, we know that there are - what we call ”trivial solutions” - n = 8, 49, 288, ...
They are parts of solutions of the corresponding Pell-like equations, so there is possibly an infinite set of solutions for
the Pell-like equation, which doesn’t mean that they are all solutions for an original equation.
n = 8. The Pell-like equation is

u2
− 852320b2 = −10613120, (11)

where u = 2761a+ 2958 There are a few sets of solutions like
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(produced by Mathematica)
No solutions for n = 9 to 22 - as far as we checked. We expect there will be sets of solutions for other ”trivial solutions”
- n = 49, 288, etc.



3

III. CONCLUSIONS

In this work we studied Diophantine equations of the type a2/1 + (a+1)2/2 + (a+2)2/3 + ... + (a+n−1)2/n = b2,
Examples of solutions, as well as parametric solutions were given.
Thanks who helped...
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